

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 172 (2003) 160-165

JOURNAL OF SOLID STATE CHEMISTRY

http://elsevier.com/locate/jssc

Crystal structure and vibrational spectra of tetrasodium dimagnesium dihydrogen diphosphate octahydrate Na₄Mg₂(H₂P₂O₇)₄ · 8H₂O

M. Harcharras,^a A. Ennaciri,^a H. Assaaoudi,^a G. Mattei,^b V. D'Orazio,^c A.G.G. Moliterni,^d and F. Capitelli^{d,*}

^a Laboratory of Spectroscopy, Department of Chemistry, Faculty of Sciences, University Ibn Tofail; B.P.133, 14000 Kenitra, Morocco

^b CNR—Istituto di Metodologie Inorganiche e dei Plasmi (IMIP), Area della ricerca di Roma-Montelibretti, Via Salaria Km 29,

^c Dipartimento di Biologia e Chimica Agro-Forestale ed Ambientale (DiBCA), Università di Bari, Via G. Amendola 165/A, 70126 Bari, Italy ^d CNR—Istituto di Cristallografia (IC), clo Dipartimento Geomineralogico, Via Orabona 4, 70125 Bari, Italy

Received 12 July 2002; received in revised form 17 October 2002; accepted 19 November 2002

Abstract

A tetrasodium dimagnesium dihydrogen diphosphate octahydrate Na₄Mg₂(H₂P₂O₇)₄ · 8H₂O was synthesized. It crystallizes in the monoclinic system, space group $P2_1/m$ (no. 11), Z = 4, and its unit-cell parameters are: a = 8.0445(3) Å, b = 11.5244(5) Å, c = 9.0825(4) Å, $\beta = 113.1401(2)^{\circ}$, V = 774.28(6) Å³. The structure was determined by single-crystal X-ray diffractometry and refined to a *R* index of 0.0294 (wR = 0.0727) for 1878 independent reflections with $I > 2\sigma(I)$. The framework is made by the alternance of layers of MgO₆/NaO₆ octahedra and double tetrahedra PO₄ along *b*-axis. Such layers are characterized by the presence of strong hydrogen bonds. (H₂P₂O₇)²⁻ anions exhibit bent eclipsed conformation. Besides, the crystal was analyzed by FT–IR and micro-Raman vibrational spectroscopy. No coincidences of the majority of the Raman and infrared spectra bands of Na₄Mg₂(H₂P₂O₇)₄ · 8H₂O confirms a centrosymmetric structure of this material. The vibrational spectra confirm the bent POP configuration in this compound.

© 2003 Elsevier Science (USA). All rights reserved.

Keywords: Diphosphate; X-ray diffraction; FT-IR spectra; RA spectra

1. Introduction

Inorganic acidic diphosphates form a well-known family of compounds which, despite first structure solutions of Corbridge [1] in 1950s, in the last decades have not been frequently topics of systematic structural and vibrational studies. In such structures, there are one or two inorganic cationic species octahedrally coordinated with oxygen atoms, even if large cations may show complex coordination, while diphosphate anion is a double PO₄ tetrahedra with a bridging oxygen atom: P–O–P conformation can be bent or linear, the latter reflecting the presence of a symmetry center. The framework is generally made by infinite chains of cation O_6 octahedra interconnected by double tetrahedra $H_xP_2O_7$ and by strong hydrogen bonds [2]. Among the anhydrous monocationic compounds, we quote systematic work on Ag₂H₂P₂O₇ [3], Cs₂H₂P₂O₇ [4], and MnHP₂O₇ [5], while among the hydrated ones we quote GdHP₂O₇·3H₂O [6], K₂H₂P₂O₇·1/2H₂O [1], Na₂H₂P₂O₇·6H₂O [1,7], Na₃HP₂O₇·H₂O [8], Na₃ HP₂O₇·9H₂O [1], and Rb₂H₂P₂O₇·1/2H₂O [9]. For such compounds, the only known vibrational studies corresponds to the M_3 HP₂O₇·nH₂O (M=K, Na, Cs; n = 0, 1, 9) [10].

Less common is systematic work on dicationic diphosphates, both anhydrous and hydrated. Interesting examples of complex coordinations are present in Ba₂GaH(P₂O₇)₂ [11] and Ca₂KH₃(P₂O₇)₂ · 2H₂O [12], where, respectively, Ba atoms are within nine-coordinate cages, and Ca atoms are seven-coordinated, forming distorted pentagonal bipyramid. Recently, Ben Moussa et al. discussed about rare-earth (*RE*) diphosphates *RE*HP₂O₇ · 3.5H₂O [13], while Assaaoudi et al. [14] discussed on layered dihydrated diphosphate-metallate (II) joined by K⁺ cations and hydrogen bonds

³⁰⁰⁻C.P. 10-00016 Monterotondo Stazione Roma, Roma, Italy

^{*}Corresponding author. Fax: +39-080-544-2591.

E-mail address: francesco.capitelli@ic.cnr.it (F. Capitelli).

Table 1 Crystal data for $Na_4Mg_2(H_2P_2O_7)_4 \cdot 8H_2O$

Crystal system	Monoclinic
Space group	$P2_{1}/m$
a	8.0445(3) Å
b	11.5244(5) Å
с	9.0825(4) Å
β	113.1401(2)°
V	$774.28(6) \times Å^3$
Ζ	4
F(000)	500
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	2.120
Crystal color and shape	Colorless irregular block
Crystal size	$0.35 \times 0.38 \times 0.41 \text{ mm}^3$
θ range for data collection	4.30–31.96°
μ MoK α (cm ⁻¹)	6.79
$\lambda \operatorname{Mo}K\alpha$ (Å)	0.71070
Index ranges	$0 \le h \ge 11; 0 \le k \ge 17; -13 \le l \ge 17$
Reflections number	2116
Refinement method	Full-matrix least-squares on F^2
Refined parameters	144
Observed reflections	1878
R	0.0294
wR	0.0727
GOF	1.096

Table 2

Atomic coordinates and equivalent isotropic displacement parameters for $Na_4Mg_2(H_2P_2O_7)_4\cdot 8H_2O$

Atom	x	У	Ζ	$U_{ m iso}{}^{ m a}$
Mg1	0.4689(1)	0.2500	0.73493(9)	0.0144(2)
Na1	0.2439(1)	0.7500	0.9099(1)	0.0273(2)
Na2	-0.0126(1)	0.7500	0.4463(1)	0.0269(2)
P1	0.29602(6)	0.51010(4)	0.64937(5)	0.0155(1)
P2	0.68940(5)	0.49770(3)	0.82906(5)	0.0150(1)
01	0.2496(2)	0.5616(1)	0.7862(2)	0.0260(3)
O2	0.5044(2)	0.5460(1)	0.6938(2)	0.0239(3)
O3	0.2826(2)	0.3806(1)	0.6433(1)	0.0189(2)
O4	0.1955(2)	0.5775(1)	0.4994(1)	0.0241(3)
O5	0.8303(2)	0.5289(1)	0.7581(2)	0.0229(3)
O6	0.7318(2)	0.5661(1)	0.9797(2)	0.0248(3)
O 7	0.6703(2)	0.3697(1)	0.8450(1)	0.0195(2)
O8	0.5641(2)	0.7500	1.0442(2)	0.0201(4)
O9	-0.0398(3)	0.7500	0.7060(3)	0.0288(4)
O10	0.0037(3)	0.7500	0.1977(3)	0.0402(5)
O11	0.5247(3)	0.2500	0.5293(3)	0.0301(5)
H1	0.244(4)	0.518(3)	0.846(3)	0.054(9)
H5	0.817(3)	0.494(2)	0.681(3)	0.035(7)
H8	0.603(3)	0.695(2)	1.021(3)	0.035(7)
H9	-0.089(4)	0.698(2)	0.714(3)	0.057(9)
H10	-0.0604	0.6867	0.1214	0.080
H11	0.566(4)	0.299(2)	0.507(4)	0.07(1)

^a Equivalent isotropic U is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

 $[KM(HP_2O_7) \cdot 2H_2O (M = Zn, Mn)]$. The present paper is devoted to the elucidation of the crystal structure of a new dicationic acidic diphosphate, Na₄Mg₂ $(H_2P_2O_7)_4 \cdot 8H_2O$: some aspects concerning the synthesis of the compound, the crystal chemistry, and vibrational spectra will also be discussed.

2. Experimental

2.1. Synthesis

 $Na_4Mg_2(H_2P_2O_7)_4 \cdot 8H_2O$ crystals were obtained by mixing two solutions of equimolar quantities of $Na_4P_2O_7$ and $MgCl_2 \cdot 6H_2O$. The pH of the two solutions were controlled with concentrated HCl. The final solution was left at room temperature. Crystals of the title compound appeared in the solution after 5 days.

2.2. X-ray diffraction

The X-ray data for the compound were collected at 293 K on a colorless irregular block crystal of dimension $0.35 \times 0.38 \times 0.41 \text{ mm}^3$. A Nonius kappa charge coupled device (CCD) area detector diffractometer with MoKa radiation ($\lambda = 0.71070 \text{ Å}$) was used. 2116 reflections were collected, and omission of intensities with $I \leq 2\sigma(I_{obs})$ gave 1878 observed reflections employed for the analysis. For unit-cell refinement 1305 reflections with $1.00^\circ < \theta < 32.03^\circ$ (resolution between 20.40 and 0.67 Å) were used: the crystal is monoclinic, space group $P2_1/m$ (Z = 4), a = 8.0445(3) Å, b = 11.5244(5) Å, c = 9.0825(4) Å, $\beta = 113.1401(2)^\circ$, $V = 774.28(6) \text{ Å}^3$, $D_c = 2.120 \text{ g cm}^{-3}$, F(000) = 500. Data were corrected for Lorentz and polarization effects.

The structure was solved through the direct method procedure of SIR97 [15] and refined by a full-matrix least-squares technique, SHELX-L [16]. The final formula of the compound resulted in Na₄Mg₂ (H₂P₂O₇)₄ · 8H₂O. The non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were localized through difference-Fourier map, except H10 which was placed in an idealized position with an assigned isotropic thermal parameter (O10–H10 bond distance is 0.998 Å, U_{iso} is 0.080 Å²); all hydrogen atoms were refined isotropically. The final cycle of least-squares refinement included 144 parameters (weighting scheme applied: $w^{-1} = [s^2(F_o^2) + (0.0263P)^2 + 0.4230P]$, with $P = [(F_o^2 + 2F_c^2)/3])$.

The final residuals were R = 0.0294 and wR = 0.0727, while GOF was 1.096. Most significant X-ray data are reported in Table 1, whereas fractional atomic coordinates and equivalent isotropic parameters are reported in Table 2.¹ Molecular drawing was performed by using ORTEP III program [17].

¹Further details of the crystal structure investigation(s) can be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany, (fax: (49) 7247-808-666; e-mail: mailto:crysdata@fiz-karlsruhe.de) on quoting the depository number CSD-412611.

Fig. 1. View of the asymmetric unit of $Na_4Mg_2(H_2P_2O_7)_4 \cdot 8H_2O$ with the atomic numbering scheme.

2.3. Infrared spectrometry

The FT–IR spectrum was recorded on KBr pellet using a ThermoNicolet FT–IR Nexus spectrometer and processed with the Omnic 6.0 software. Pellet was obtained by pressing a mixture of 1 mg of sample and 400 mg of dried KBr (spectrometry grade) under vacuum at 10 tons for 10 min. Instrumental parameters were: spectral range $4000-400 \text{ cm}^{-1}$, 64 scans min⁻¹, resolution 2 cm⁻¹.

2.4. Micro-Raman spectrometry

Micro-Raman measurements were performed in back-scattering geometry at room temperature by using a Dilor XY triple spectrometer equipped with a liquid nitrogen-cooled CCD detector and an adapted Olympus microscope. The spectra were excited with an Ar^+ laser (514.5 nm, 3 mW) focused onto a spot of 2 µm in diameter. The scattered light was not analyzed in polarization. The spectral resolution was 0.5 cm^{-1} . The lines of a neon lamp were used for frequency scale calibration. Spectra treatment by suitable software programs was employed to obtain frequencies, line widths and intensities of the Raman bands.

3. Discussion

3.1. Crystal packing

The structure is characterized by seven atoms in special positions: Mg1, Na1, Na2, O8, O9, O10, and O11: each of them has a multiplicity half of the general position. Fig. 1 shows the asymmetric unit with atomic numbering scheme.

The framework is made by the infinite repetition of layers of, respectively, double PO_4 tetrahedron and one MgO_6 and two NaO_6 octahedra (Fig. 2). PO_4 tetrahedra share with $MgIO_6$ octahedra vertices occupied by O7 and O3 oxygen atoms, while with $NaIO_6$ and $Na2O_6$ octahedra share vertices occupied, respectively, by O1 and O3 oxygen atoms; $Na2O_6$ and $MgIO_6$ octahedra share the O3–O3 edge.

The P–O distances within PO₄ tetrahedra of $(H_2P_2O_7)^{2-}$ are comparable to those observed in dihydrogen diphosphate anions from other publications [18–21]. It is possible to distinguish three types of P–O distances: P–O(b) bonds (mean 1.613 Å) corresponding to the bridge oxygen which are the longest ones, P–OH bonds (mean 1.550 Å) involving oxilydril groups, and P–O(ext) corresponding to the external O atoms, which are the shortest ones (mean 1.497 Å). The diphosphate anion show bent eclipsed configuration (see Fig. 1): P1–O2–P2 angle is 131.21(5)°. The average O(b)–P–O(ext) bond angle is 106.25 (5)°.

Fig. 2. Na₄Mg₂(H₂P₂O₇)₄ \cdot 8H₂O polyhedra representation (2 \times 2 \times 2 cells).

Mg octahedron is almost regular: Mg–O(basal) distances range from 2.055 up 2.124 Å. The Na1 and Na2 octahedra are slightly distorted. Na1–O distances range from 2.305 up to 2.476 Å, while Na2–O range from 2.313 up to 2.520 Å. The distortion index, calculated as [(Cation–O)_{max}–(Cation–O)_{min}]/ \langle Cation–O \rangle [22], is 0.033 for Mg octahedron, while it increases for Na octahedra, peaking, respectively, 0.070 and 0.084 for Na1 and Na2. This trend is expected on the basis of the shorter Mg²⁺ ionic radius (0.65 Å) with respect to that of Na⁺ (0.95 Å): that allows a better packing of the oxygens within the Mg rather than within the Na octahedra. Selected bond lengths and angles are shown in Table 3.

The structure is characterized by the presence of strong hydrogen bonds. The strongest ones are those which concern hydrogen atoms belonging to the $H_2P_2O_7$ group (H1, H5) involved with oxygen atoms of adjacent groups $H_2P_2O_7$, and hydrogen atom H8, bonded to one of Na1 octahedron's oxygen atom, O8, is involved in hydrogen bond with oxygen atom O6 of the P2 tetrahedron. In these cases, the strength of the hydrogen bond is given by the corresponding short O–O (donor–acceptor) distances, which range from 2.542 up to 2.697 Å. Besides, their corresponding H–O (acceptor) distance range from 1.798 up to 1.932 Å.

A fourth hydrogen bond, O9–O5, can be considered less strong in comparison with the above-described

Table 3								
Selected	bond	lengths	(Å)	and	angles	(deg)	for	$Na_4Mg_2(H_2P_2O_7)_4$.
8H ₂ O								

01120			
Bond lengths			
P1-O3	1.496(1)	Na2-O10	2.313(2)
P1O4	1.499(1)	Na2–O9	2.453(2)
P1O1	1.550(1)	Na2–O3 ^V	2.501(1)
P1-O2	1.616(1)	Na2–O3 ^{VI}	2.501(1)
		Na2–O4 ^{III}	2.520(1)
		Na2–O4	2.520(1)
P207	1.496(1)	Angles	
P2-O6	1.498(1)	P1O2P2	131.21(9)
P2O5	1.550(1)		
P2-O2	1.611(1)		
Mg1–O3 ^I	2.056(1)	O1–P1–O2	104.75(8)
Mg1–O3	2.056(1)	O1-P1-O3	112.05(7)
Mg1–O7	2.062(1)	O1-P1-O4	108.42(7)
Mg1–O7 ^I	2.062(1)	O2-P1-O3	108.50(7)
Mg1-011	2.086(2)	O2-P1-O4	103.35(7)
Mg1-O8 ^{II}	2.124(2)	O3-P1-O4	118.55(7)
-		O2–P2–O5	102.15(8)
Na1–O9	2.305(2)	O2-P2-O6	108.96(7)
Na1–O8	2.378(2)	O2-P2-O7	108.34(7)
Na1–O1	2.453(1)	O5-P2-O6	108.45(8)
Nal-O1 ^{III}	2.453(1)	O5-P2-O7	112.86(7)
Nal-O7 ^{IV}	2.476(1)	O6-P2-O7	115.23(7)
Na1–O7 ^{II}	2.476(1)		
~ .	L		

Symmetry codes: ${}^{I}(x, -y - 3/2, z); {}^{II}(1 - x, -y - 1, 2 - z);$ ${}^{III}(x, -y - 1/2, z); {}^{IV}(1 - x, y + 1/2, 2 - z); {}^{V}(-x, -1 - y, 1 - z);$ ${}^{VI}(-x, 1/2 + y, 1 - z).$

bonds: O–O (donor–acceptor) distance is 2.863 Å, whereas the corresponding H–O(acceptor) distance is 2.146 Å.

The weakest hydrogen bonds are those in which the hydrogen atom is involved in two or three bonds with oxygen acceptor atoms: that is the case of H10 (trifurcated hydrogen bond) and H11 (bifurcated hydrogen bond). Corresponding O–O (donor–acceptor) and H–O (acceptor) range, with respect, from 3.052 up to 3.252 Å and from 2.166 up to 2.913 Å. Bond lengths and angles in the hydrogen-bonding scheme are reported in Table 4.

3.2. Results of vibrational spectroscopy

The Raman and infrared spectra of Na_4Mg_2 (H₂P₂O₇)₄ · 8H₂O diphosphate are illustrated in Figs. 3 and 4, respectively. Band assignments for the fundamental modes of this compound are given in Table 5.

In the diphosphate Na₄Mg₂(H₂P₂O₇)₄ · 8H₂O, each $(H_2P_2O_7)^{2-}$ anion possesses three types of distances: P-O(t)_{terminal} due to the PO₂ groups, P-O(b)_{bridge} attributed to the POP bridge and P-OH. Therefore, the band assignments in both Raman and infrared spectra of the title salt are made in terms of the PO₂, POP, P-OH, and O-H vibrations [13,14].

Table 4 Hydrogen bonding scheme for $Na_4Mg_2(H_2P_2O_7)_4 \cdot 8H_2O$: bond lengths (Å) and angles (deg)

Donor-H	Donor…acceptor	H…acceptor	Donor-H…acceptor
O1-H1	$O1 \cdots O6^{I}$	$H1 \cdots O6^{I}$	$O1-H1\cdots O6^{I}$
0.757(32)	2.542(2)	1.798(31)	167.24(3.14)
O5–H5	O5…O4 ^{II}	H5····O4 ^{II}	O5–H5…O4 ^{II}
0.777(27)	2.576(2)	1.802(27)	174.11(2.61)
O8–H8	O8…O6	H8…O6	O8–H8…O6
0.769(24)	2.697(2)	1.932(24)	172.42(2.32)
O9–H9	O9…O5 ^{III}	H9…O5 ^{III}	O9–H9…O5 ^{III}
0.733(29)	2.863(2)	2.146(28)	166.40(2.84)
O11-H11	$O11 \cdots O2^{II}$	H11O2 ^{II}	$O11-H11\cdots O2^{II}$
0.721(33)	3.052(2)	2.458(30)	140.93(2.85)
O11-H11	O11O4 ^{II}	H11…O4 ^{II}	$O11-H11\cdots O4^{II}$
0.721(33)	3.090(3)	2.409(33)	158.15(3.14)
O10-H10	$O10\cdots O8^{IV}$	H10O8 ^{IV}	O10–H10…O8 ^{IV}
0.998(1)	3.252(3)	2.913(2)	100.82(1)
O10-H10	$O10\cdots O6^{IV}$	H10O6 ^{IV}	O10-H10ZO6 ^{IV}
0.998(1)	3.129(2)	2.166(1)	161.50(3)
O10-H10	$O10 \cdots O8^{V}$	$H10\cdots O8^{V}$	$O10-H10\cdots O8^{V}$
0.998(1)	3.252(3)	2.913(2)	100.82(1)
Symmetry	codes: $I(-x \perp 1)$	$-v = 1 = 7 \pm 2^{2}$	$r^{\rm II}(-r+1) = r - 1$

Symmetry codes: (-x+1, -y-1, -z+2); (-x+1, -y-1, -z+2); (-x+1, -y-1, -z+1); (x-1, +y, +z); (x-1, +y, +z-1); (x-1, -y-1/2, +z-1).

Fig. 3. Raman spectrum of $Na_4Mg_2(H_2P_2O_7)_4 \cdot 8H_2O$.

Broadbands in the region of stretching vibrations of water molecules $(2500-3800 \text{ cm}^{-1})$ show the presence of a system of hydrogen bonds. The splitting of the

Fig. 4. FT-IR spectrum of $Na_4Mg_2(H_2P_2O_7)_4 \cdot 8H_2O$.

stretching vibrations of H₂O ($3800-2500 \text{ cm}^{-1}$) in both Raman and infrared spectra, and of the bending vibrations of water molecules (1652 and $1610 \,\mathrm{cm}^{-1}$) in infrared spectrum, and at (1620 and 1752 cm^{-1}) in Raman spectrum show the existence of the nonequivalent positions of water molecules in the crystal lattice [23]. The results of X-ray analysis of the sample $Na_4Mg_2(H_2P_2O_7)_4 \cdot 8H_2O$ reported in this paper are in good agreement with the spectroscopic data. The frequencies of vOH are localized in both Raman and infrared spectra in the range 2300- 3000 cm^{-1} . Bending vibrations δOH are located at 1254 and 1213 cm^{-1} in Raman. The same vibrations are observed at 1268 and $1239 \,\mathrm{cm}^{-1}$ in infrared spectrum. The liberation of water molecules $\rho H_2 O$ is located at 601 and 635 cm⁻¹ for Raman and infrared spectra, respectively [24].

The terminal stretching modes of $(P_2O_7)^{4-}$ anions usually occur in the region 1250–975 cm⁻¹ [25]. The Raman spectrum show eight peaks in the internal mode region, and the most intense band in the Raman spectra at 1059 cm⁻¹ is assigned to the symmetric terminal P–O stretching vibration of the PO₂ groups. The infrared spectrum gives five bands, and the asymmetric stretching vibrations of PO₂ groups give the most intense band at 1066 cm⁻¹ in the infrared spectrum (Fig. 4).

The bridge vibrations give one Raman peak for the symmetric and antisymmetric mode which are observed at 738 and 906 cm⁻¹, respectively. In the infrared spectrum, only two bands are observed at 722 cm⁻¹ (symmetric mode v_s POP) and 955 cm⁻¹ (antisymmetric mode v_{as} POP). The (weak and broad) bands located at 797 cm⁻¹ in Raman, and at 835 and 789 cm⁻¹ in infrared spectrum are due to the vP–OH mode [13,14].

The modes lying between $200-320 \text{ cm}^{-1}$ in the Raman spectrum can be attributed to the external, torsional, and POP deformation modes. The deformation modes frequency of the POP bridge occurs around 317 cm^{-1} [26], while the rocking and the PO₂ deformation modes are seen in the region 380–600 [13].

Table 5 Band assignments for Na₄Mg₂(H₂P₂O₇)₄ · 8H₂O

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Infrared frequency (cm ⁻¹)	Raman frequency (cm ⁻¹)	Assignments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3615 m	3569 m(sh)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3547 m	3554 m	
$\begin{array}{cccccccc} 3480 & w & & & & & & & & & & & & & & & & & $	3491 m	3490 w	vH_2O
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3480 w	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3268 mb	3274 w(sh)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3173 w	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2925 mb	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2749 wb	2720 mb	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2323 mb	υOH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1652 m	1752 wb	$\delta H_2 O$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1610 m	1620 wb	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1254 w	δOH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1213 w	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1193 s	1168 vw	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1145 m(sh)	1138 vw	
999 s 1059 vs $v_s PO_3$ 1033 m 1009 m 981 s (sh) 955 s 906 w $v_{as} POP$ 835 wb 797 vwb $vP-OH$ 789 w(sh) 722 m 738 s $v_s POP$ 635 w 601 m ρH_2O 573 m 531 s 548 m 502 m 500 m $\delta PO_3 + \rho PO_3$ 460 m 484 m 425 m $451 s426 m(sh)317 \text{ w} \delta POP + \text{torsional} \text{mode} + \text{external modes}293 w233 vw204 vw$	1066 vs	1114 m	$v_{as}PO_3$ +
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	999 s	1059 vs	$v_{\rm s} {\rm PO}_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1033 m	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1009 m	
$\begin{array}{cccccccc} 955 \ {\rm s} & 906 \ {\rm w} & v_{\rm as} {\rm POP} \\ 835 \ {\rm wb} & 797 \ {\rm vwb} & v{\rm P-OH} \\ 789 \ {\rm w(sh)} & & & \\ 722 \ {\rm m} & 738 \ {\rm s} & v_{\rm s} {\it POP} \\ 635 \ {\rm w} & 601 \ {\rm m} & \rho{\rm H}_2{\rm O} \\ 573 \ {\rm m} & & \\ 531 \ {\rm s} & 548 \ {\rm m} \\ 502 \ {\rm m} & 500 \ {\rm m} & \delta {\rm PO}_3 + \rho {\rm PO}_3 \\ 460 \ {\rm m} & 484 \ {\rm m} \\ 425 \ {\rm m} & 451 \ {\rm s} \\ 426 \ {\rm m(sh)} & & \\ & & \\ 317 \ {\rm w} & & \delta {\rm POP} + {\rm torsional} \\ {\rm mode} + {\rm external \ modes} \\ & & \\ 293 \ {\rm w} \\ 233 \ {\rm vw} \\ 204 \ {\rm vw} \end{array}$		981s (sh)	
835 wb 797 vwb $vP-OH$ 789 w(sh) 722 m 738 s v_sPOP 635 w 601 m ρH_2O 573 m 531 s 548 m 502 m 500 m $\delta PO_3 + \rho PO_3$ 460 m 484 m 425 m 425 m 451 s 426 m(sh) 317 w $\delta POP + torsional mode + external modes$ 293 w 233 vw 204 vw	955 s	906 w	υ _{as} POP
789 w(sh) 722 m 738 s $v_s POP$ 635 w 601 m ρH_2O 573 m 531 s 548 m 502 m 500 m $\delta PO_3 + \rho PO_3$ 460 m 484 m 425 m 451 s 426 m(sh) 317 w $\delta POP + torsional mode + external modes$ 293 w 233 vw 204 vw	835 wb	797 vwb	vP–OH
722 m 738 s $v_s POP$ 635 w 601 m ρH_2O 573 m 531 s 548 m 502 m 500 m $\delta PO_3 + \rho PO_3$ 460 m 484 m 425 m 425 m 451 s 426 m(sh) 317 w $\delta POP + torsional mode + external modes$ 293 w 233 vw 204 vw 204 vw	789 w(sh)		
	722 m	738 s	$v_{s}POP$
$573 \text{ m} \\ 531 \text{ s} \\ 502 \text{ m} \\ 500 \text{ m} \\ 460 \text{ m} \\ 484 \text{ m} \\ 425 \text{ m} \\ 451 \text{ s} \\ 426 \text{ m(sh)} \\ 317 \text{ w} \\ 3200 \text{ w} \\ 323 \text{ w} \\ 204 \text{ w} \\ 310 \text{ w} \\ 323 \text{ w} \\ 204 \text{ w} \\ 310 \text{ w} \\$	635 w	601 m	$ ho H_2O$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	573 m		
	531 s	548 m	
460 m 484 m 425 m 451 s 426 m(sh) 317 w δPOP + torsional mode + external modes 293 w 233 vw 204 vw	502 m	500 m	$\delta PO_3 + \rho PO_3$
425 m 451 s 426 m(sh) 317 w 293 w 233 vw 204 vw	460 m	484 m	
 426 m(sh) 317 w δPOP + torsional mode + external modes 293 w 233 vw 204 vw 	425 m	451 s	
 317 w δPOP + torsional mode + external modes 293 w 233 vw 204 vw 		426 m(sh)	
293 w 233 vw 204 vw		317 w	δ POP + torsional mode + external modes
233 vw 204 vw		293 w	
204 vw		233 vw	
		204 vw	

s=strong, m=medium, w=weak, v=very, b=broad, sh=shoulder, v=stretching, δ =bending, ρ =rocking.

A comparison of the Raman and infrared bands (Table 5) shows that the majority of them are not coincident. This fact confirms a centrosymmetric structure of $Na_4Mg_2(H_2P_2O_7)_4 \cdot 8H_2O$.

The v_s POP vibrations is observed only in the Raman spectrum when the bridge is linear. For the bent bridge configuration this vibration appears in both Raman and infrared spectra [27]. In our case, the appearance of v_s POP (738 and 722 cm⁻¹), respectively, in both Raman and IR spectra indicates a bent configuration in $Na_4Mg_2(H_2P_2O_7)_4 \cdot 8H_2O$, and this is in good agreement with our structural study.

Acknowledgments

We thank Prof. V. Bertolasi (University of Ferrara, Italy) for his helpful collaboration in X-ray diffractometry.

References

- [1] D.E.C. Corbridge, Acta Crystallogr. 10 (1957) 85-85.
- [2] D.E.C. Corbridge, The Structural Chemistry Of Phosphorous, Elsevier, Amsterdam, 1974.
- [3] M.-T. Averbuch-Pouchot, A. Durif, Eur. J. Solid State Inorg. Chem. 29 (1992) 993–999.
- [4] M.-T. Averbuch-Pouchot, A. Durif, C. R. Acad. Sci. Paris 316 (1993) 41–46.
- [5] A. Durif, M.-T. Averbuch-Pouchot, Acta Crystallogr. B 38 (1982) 2883–2885.
- [6] F. Chehimi-Moumen, D. Ben Hassen Chehimi, M. Ferid, M. Trabelsi-Ayadi, Mater. Res. Bull. 36 (2001) 365–373.
- [7] R.L. Collin, M. Willis, Acta Crystallogr. B 27 (1971) 291-302.
- [8] L.S. Ivashkevic, K.A. Selevich, A.S. Lyakhov, A.F. Selevich, Yu.I. Petrusevich, Z. Kristallogr. 217 (2002) 73–77.
- [9] M.-T. Averbuch-Pouchot, A. Durif, C. R. Acad. Sci. Paris 316 (1993) 469–476.
- [10] O. Sarr, L. Diop, Spectrochim. Acta A 43 (1987) 999-1005.
- [11] K.-F. Hsu, S.-L. Wang, Acta Crystallogr. C 55 (1999) 1400-1401.
- [12] M. Mathew, L.W. Schroeder, W.E. Brown, J. Crystallogr. Spectrosc. Res. 23 (1993) 657–661.
- [13] S. Ben Moussa, I. Sobrados, J.E. Iglesias, M. Trabelsi-Ayedi, J. Sanz, J. Mater. Chem. 10 (2000) 1973–1978.
- [14] H. Assaaoudi, A. Ennaciri, M. Harcharras, B. El Bali, F. Reinauer, R. Glaum, A. Rulmont, M.R. Spirlet, Acta Crystallogr. C 58 (2002) i79–i81.
- [15] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 32 (1999) 115–119.
- [16] G.M. Sheldrick, SHELXL-97. Program for the Refinement of Crystal Structures, University of Gottingen, Germany, 1997.
- [17] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565–566.
- [18] N.V. Stus, V.V. Lisnyak, P.G. Nagorny, J. Alloy Compdounds 314 (2001) 62–66.
- [19] E.H. Soumhi, I. Saadoune, A. Driss, T. Jouini, Eur. J. Solid State Inorg. Chem. 35 (1998) 699–706.
- [20] A. Gharbi, M. Charfi, A. Jouini, Acta Crystallogr. C 52 (1996) 2246–2248.
- [21] E.H. Soumhi, I.T. Jouini, Acta Crystallogr. C 51 (1995) 1213–1215.
- [22] D. Kobashi, S. Kohara, J. Yamakawa, A. Kawahara, Acta Crystallogr. C 53 (1997) 1523–1525.
- [23] D. Philip, B. Lizbeth, G. Aruldhas, J. Raman Spectrosc. 21 (1990) 523–524.
- [24] B.C. Cornilsen, J. Mol. Struct. 117 (1984) 1-9.
- [25] M. Harcharras, A. Ennaciri, A. Rulmont, B. Gilbert, Spectrochim. Acta A 53 (1997) 345–352.
- [26] N. Santha, V.U. Nayar, J. Spectrochim. Acta 49 (1993) 47-52.
- [27] A. Rulmont, R. Cahay, M. Liegeois-Duykaerts, P. Tarte, Eur. J. Solid State Inorg. Chem. 28 (1991) 207–219.